例如:"lncRNA", "apoptosis", "WRKY"

A determinant for directionality of organelle transport in Drosophila embryos.

Curr. Biol.2003 Sep 30;13(19):1660-8
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BACKGROUND:Motor-driven transport along microtubules is a primary cellular mechanism for moving and positioning organelles. Many cargoes move bidirectionally by using both minus and plus end-directed motors. How such cargoes undergo controlled net transport is unresolved. RESULTS:Using a combination of genetics, molecular biology, and biophysics, we have identified Halo, a novel regulator of lipid droplet transport in early Drosophila embryos. In embryos lacking Halo, net transport of lipid droplets, but not that of other cargoes, is specifically altered; net transport is minus-end directed at developmental stages when it is normally plus-end directed. This reversal is due to an altered balance of motion at the level of individual organelles; without Halo, travel distances and stall forces are reduced for plus-end and increased for minus-end motion. During development, halo mRNA is highly upregulated just as net plus-end transport is initiated (phase II), and its levels drop precipitously shortly before transport becomes minus-end directed (phase III). Exogenously provided Halo prevents the switch to net minus-end transport in phase III in wild-type embryos and induces net plus-end transport during phase II in halo mutant embryos. This mechanism of regulation is likely to be of general importance because the Drosophila genome encodes a family of related proteins with similar sequences, each transiently expressed in distinct domains. CONCLUSIONS:We conclude that Halo acts as a directionality determinant for embryonic droplet transport and is the first member of a new class of transport regulators.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读