例如:"lncRNA", "apoptosis", "WRKY"

Thermophile-specific proteins: the gene product of aq_1292 from Aquifex aeolicus is an NTPase.

BMC Biochem.2003 Sep 23;4:12
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BACKGROUND:To identify thermophile-specific proteins, we performed phylogenetic patterns searches of 66 completely sequenced microbial genomes. This analysis revealed a cluster of orthologous groups (COG1618) which contains a protein from every thermophile and no sequence from 52 out of 53 mesophilic genomes. Thus, COG1618 proteins belong to the group of thermophile-specific proteins (THEPs) and therefore we here designate COG1618 proteins as THEP1s. Since no THEP1 had been analyzed biochemically thus far, we characterized the gene product of aq_1292 which is THEP1 from the hyperthermophilic bacterium Aquifex aeolicus (aaTHEP1). RESULTS:aaTHEP1 was cloned in E. coli, expressed and purified to homogeneity. At a temperature optimum between 70 and 80 degrees C, aaTHEP1 shows enzymatic activity in hydrolyzing ATP to ADP + Pi with kcat = 5 x 10(-3) s(-1) and Km = 5.5 x 10(-6) M. In addition, the enzyme exhibits GTPase activity (kcat = 9 x 10(-3) s(-1) and Km= 45 x 10(-6) M). aaTHEP1 is inhibited competitively by CTP, UTP, dATP, dGTP, dCTP, and dTTP. As shown by gel filtration, aaTHEP1 in its purified state appears as a monomer. The enzyme is resistant to limited proteolysis suggesting that it consists of a single domain. Although THEP1s are annotated as "predicted nucleotide kinases" we could not confirm such an activity experimentally. CONCLUSION:Since aaTHEP1 is the first member of COG1618 that is characterized biochemically and functional information about one member of a COG may be transferred to the entire COG, we conclude that COG1618 proteins are a family of thermophilic NTPases.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读