例如:"lncRNA", "apoptosis", "WRKY"

Expression of Ca(2+)-induced Ca2+ release channel activity from cardiac ryanodine receptor cDNA in Chinese hamster ovary cells.

J. Biochem.1992 Oct;112(4):508-13. doi:10.1093/oxfordjournals.jbchem.a123930
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


We constructed an expression plasmid (pMAMCRR51) that carried the entire protein-coding sequence of the rabbit cardiac ryanodine receptor cDNA, linked to the dexamethasone-inducible mouse mammary tumor virus promoter and Escherichia coli xanthine-guanine phosphoribosyltransferase (gpt). Chinese hamster ovary (CHO) cells were transfected with pMAMCRR51 and mycophenolic acid-resistant cells showing caffeine-induced intracellular Ca2+ transients were selected. Immunoprecipitation with a monoclonal antibody against the canine cardiac ryanodine receptor revealed that the cell clones thus selected exhibited Ca(2+)-dependent [3H]ryanodine binding activity, which was stimulated by 5 mM ATP or 1 M KCl. The apparent dissociation constant (Kd) for [3H]ryanodine was 6.6 nM in 1 M KCl, which was similar to the Kd obtained with cardiac microsomes. Immunoprecipitation also demonstrated that these cell clones expressed a protein indistinguishable in M(r) from the ryanodine receptor in canine cardiac microsomes. The ryanodine binding activity expressed in CHO cells increased significantly after dexamethasone induction. In saponin-skinned CHO cells transfected with pMAMCRR51, micromolar Ca2+ or millimolar caffeine evoked rapid Ca2+ release from the intracellular Ca2+ stores. In skinned control CHO cells, we did not observe such Ca2+ release activity. These results clearly demonstrate that the cardiac ryanodine receptor is stably expressed in internal membranes of CHO cells and functions as Ca(2+)-induced Ca2+ release channels.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读