例如:"lncRNA", "apoptosis", "WRKY"

Genome-wide analyses revealing a signaling network of the RcsC-YojN-RcsB phosphorelay system in Escherichia coli.

J Bacteriol. 2003 Oct;185(19):5735-46. doi:10.1128/JB.185.19.5735-5746.2003
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


In Escherichia coli, capsular colanic acid polysaccharide synthesis is regulated through the multistep RcsC-->YojN-->RcsB phosphorelay. By monitoring a hallmarked cps::lacZ reporter gene, we first searched for physiological stimuli that propagate the Rcs signaling system. The expression of cps::lacZ was activated when cells were grown at a low temperature (20 degrees C) in the presence of glucose as a carbon source and in the presence of a relatively high concentration of external zinc (1 mM ZnCl(2)). In this Rcs signaling system, the rcsF gene product (a putative outer membrane-located lipoprotein) was also an essential signaling component. Based on the defined signaling pathway and physiological stimuli for the Rcs signaling system, we conducted genome-wide analyses with microarrays to clarify the Rcs transcriptome (i.e., Rcs regulon). Thirty-two genes were identified as putative Rcs regulon members; these genes included 15 new genes in addition to 17 of the previously described cps genes. Using a set of 37 two-component system mutants, we performed alternative genome-wide analyses. The results showed that the propagation of the zinc-responsive Rcs signaling system was largely dependent on another two-component system, PhoQ/P. Considering the fact that the PhoQ/P signaling system responds to external magnesium, we obtained evidence which supports the view that there is a signaling network that connects the Rcs system with the PhoQ/P system, which coordinately regulates extracellular polysaccharide synthesis in response to the external concentrations of divalent cations.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读