例如:"lncRNA", "apoptosis", "WRKY"

Cloning, sequencing, and characterization of the murine nm23-M5 gene during mouse spermatogenesis and spermiogenesis.

Biochem. Biophys. Res. Commun.2003 Jun 20;306(1):198-207
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Nucleoside diphosphate kinases (NDPKs) are conserved throughout evolution and have been shown to be involved in various biological phenomena. By functional screening in yeast, we identified a new member of the NDPK family, nm23-M5, which encodes a 211-amino acid protein with 86% identity to the human homolog Nm23-H5. Northern blot analysis revealed that nm23-M5 encodes two transcripts of 0.8 and 0.7kb, which are highly and specifically expressed in adult testis. Reverse transcriptase polymerase chain reaction (RT-PCR) analysis showed that nm23-M5 transcripts first appear in pachytene spermatocytes and increase in abundance in subsequent stages. However, a low level of nm23-M5 mRNA was detected by RT-PCR in other tissues, such as ovary, brain, heart, and kidney. In situ hybridization studies showed that testicular nm23-M5 transcripts are localized in stage 12 to stage 16 spermatids in the neighboring lumen of seminiferous tubules. This distribution contrasts with that of Nm23-H5 transcripts, which are specifically found in spermatogonia and early spermatocytes. The heterologous expression of nm23-M5 in yeast cells confers protection from cell death induced by Bax, which is due to the generation of reactive oxygen species. Furthermore, overexpression of nm23-M5 in fibroblasts altered the cellular levels of several antioxidant enzymes, particularly glutathione peroxidase 5. Thus, we believe that the murine nm23-M5 gene plays an important role in late spermiogenesis by elevating the ability of late-stage spermatids to eliminate reactive oxygen species.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读