例如:"lncRNA", "apoptosis", "WRKY"

C. elegans PAT-6/actopaxin plays a critical role in the assembly of integrin adhesion complexes in vivo.

Curr. Biol.2003 May 27;13(11):922-32
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BACKGROUND:The novel focal adhesion protein actopaxin includes tandem unconventional calponin homology (CH) domains and a less well-conserved N-terminal stretch. Dominant-negative studies have implicated actopaxin in focal adhesion formation. RESULTS:PAT-6/actopaxin, the sole actopaxin homolog in C. elegans, is located in body wall muscle attachments that are in vivo homologs of focal adhesions. We show using pat-6 protein null alleles that PAT-6/actopaxin has critical nonredundant roles during attachment maturation. It is required to recruit UNC-89 and myofilaments to newly forming attachments, and also to reposition the attachments so that they form the highly ordered array of dense body and M line attachments that are characteristic of mature muscle cells. PAT-6/actopaxin is not required for the deposition of UNC-52/perlecan in the basal lamina, nor for the initiation of attachment assembly, including the clustering of integrin into foci and the recruitment of attachment proteins PAT-4/ILK, UNC-112, and DEB-1/vinculin from the cytosol. PAT-6/actopaxin, PAT-4/ILK, and UNC-112 are each required for the same steps during attachment assembly in vivo, consistent with the notion that they work together in multiprotein complex. Supporting this idea, PAT-4/ILK can simultaneously bind to PAT-6/actopaxin and UNC-112, forming a ternary complex, in yeast three-hybrid assays. Finally, we show that both calponin homology domains are required for PAT-6/actopaxin's critical functions during attachment assembly in vivo. CONCLUSIONS:We show directly by loss-of-function genetics that PAT-6/actopaxin plays essential roles during the maturation of integrin-mediated muscle attachments in vivo.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读