例如:"lncRNA", "apoptosis", "WRKY"

Destabilization of Na(v)1.7 sodium channel alpha-subunit mRNA by constitutive phosphorylation of extracellular signal-regulated kinase: negative regulation of steady-state level of cell surface functional sodium channels in adrenal chromaffin cells.

Mol. Pharmacol.2003 May;63(5):1125-36. doi:10.1124/mol.63.5.1125
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


In cultured bovine adrenal chromaffin cells expressing Na(v)1.7 isoform of voltage-dependent Na(+) channels, treatment (> or = 6 h) with serum deprivation, PD98059, or U0126 increased cell surface [(3)H]saxitoxin ([(3)H]STX) binding by approximately 58% (t(1/2) = 12.5 h), with no change in the K(d) value. Immunoblot analysis showed that either treatment attenuated constitutive phosphorylation of extracellular signal-regulated kinase (ERK) 1 and ERK2 but not of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase (JNK) 1 and JNK2. The increase of [(3)H]STX binding and the attenuated phosphorylation of ERK1 and ERK2 returned to the control nontreated levels after the addition of serum or the washout of PD98059- or U0126-treated cells. Simultaneous treatment of serum deprivation with PD98059 or U0126 did not produce an additional increasing effect on [(3)H]STX binding, compared with either treatment alone. In cells subjected to either treatment, veratridine-induced maximum (22)Na(+) influx was augmented by approximately 47%, with no change in the EC(50) value; Ptychodiscus brevis toxin-3 enhanced veratridine-induced (22)Na(+) influx by 2-fold, as in nontreated cells. Serum deprivation, PD98059, or U0126 increased Na(+) channel alpha- but not beta(1)- subunit mRNA level by approximately 50% between 3 and 24 h; cycloheximide, an inhibitor of protein synthesis, increased alpha-subunit mRNA level and nullified additional increasing effect of either treatment on alpha-subunit mRNA level. Either treatment prolonged half-life of alpha-subunit mRNA from 17.5 to approximately 26.3 h without altering alpha-subunit gene transcription. Thus, constitutively phosphorylated/activated ERK destabilizes Na(+) channel alpha-subunit mRNA via translational event, which negatively regulates steady-state level of alpha-subunit mRNA and cell surface expression of functional Na(+) channels.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读