例如:"lncRNA", "apoptosis", "WRKY"

Functional interactions between the estrogen receptor coactivator PELP1/MNAR and retinoblastoma protein.

J Biol Chem. 2003 Jun 13;278(24):22119-27. Epub 2003 Apr 07
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


PELP1 (proline-, glutamic acid-, and leucine-rich protein-1 (also referred to as MNAR, or modulator of nongenomic activity of estrogen receptor)), a recently identified novel coactivator of estrogen receptors, is widely expressed in a variety of 17 beta-estradiol (E2)-responsive reproductive tissues and is developmentally regulated in mammary glands. pRb (retinoblastoma protein), a cell cycle switch protein, plays a fundamental role in the proliferation, development, and differentiation of eukaryotic cells. To study the putative function of PELP1, we established stable MCF-7 breast cancer cell lines overexpressing PELP1. PELP1 overexpression hypersensitized breast cancer cells to E2 signaling, enhanced progression of breast cancer cells to S phase, and led to persistent hyperphosphorylation of pRb in an E2-dependent manner. Using phosphorylation site-specific pRb antibodies, we identified Ser-807/Ser-811 of pRb as a potential target site of PELP1. Interestingly, PELP1 was discovered to be physiologically associated with pRb and interacted via its C-terminal pocket domain, and PELP1/pRb interaction could be modulated by antiestrogen agents. Using mutant pRb cells, we demonstrated an essential role for PELP1/pRb interactions in the maximal coactivation functions of PELP1 using cyclin D1 as one of the targets. Taken together, these findings suggest that PELP1, a steroid coactivator, plays a permissive role in E2-mediated cell cycle progression, presumably via its regulatory interaction with the pRb pathway.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读