例如:"lncRNA", "apoptosis", "WRKY"

Metallothionein-I overexpression alters brain inflammation and stimulates brain repair in transgenic mice with astrocyte-targeted interleukin-6 expression.

Glia. 2003 May;42(3):287-306. doi:10.1002/glia.10208
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Transgenic expression of IL-6 in the CNS under the control of the GFAP gene promoter, glial fibrillary acidic protein-interleukin-6 (GFAP-IL-6) mice, raises an inflammatory response and causes significant brain damage. However, the results obtained in the GFAP-IL-6 mice after a traumatic brain injury, such as a cryolesion, demonstrate a neuroprotective role of IL-6. Thus, the GFAP-IL-6 mice showed faster tissue repair and decreased oxidative stress and apoptosis compared with control litter-mate mice. The neuroprotective factors metallothionein-I+II (MT-I+II) were upregulated by the cryolesion to a higher extent in the GFAP-IL-6 mice, suggesting that they could be related to the neuroprotection afforded by the transgenic expression of IL-6. To examine this possibility, we have crossed GFAP-IL-6 mice with transgenic mice overexpressing MT-I (TgMT), producing double transgenic GFAP-IL-6 TgMT mice. The results obtained after cryolesion in GFAP-IL-6 TgMT mice, as well as in TgMT mice, consistently supported the idea that the increased MT-I+II levels observed in GFAP-IL-6 mice are a fundamental and important mechanism for coping with brain damage. Accordingly, MT-I overexpression regulated the inflammatory response, decreased oxidative stress and apoptosis significantly, and increased brain tissue repair in comparison with either GFAP-IL-6 or control litter-mate mice. Overall, the results demonstrate that brain MT-I+II proteins are fundamental neuroprotective factors.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读