例如:"lncRNA", "apoptosis", "WRKY"

The activator of GntII genes for gluconate metabolism, GntH, exerts negative control of GntR-regulated GntI genes in Escherichia coli.

J Bacteriol. 2003 Mar;185(6):1783-95. doi:10.1128/JB.185.6.1783-1795.2003
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Gluconate is one of the preferred carbon sources of Escherichia coli, and two sets of gnt genes (encoding the GntI and GntII systems) are involved in its transport and metabolism. GntR represses the GntI genes gntKU and gntT, whereas GntH was previously suggested to be an activator for the GntII genes gntV and idnDO-gntWH. The helix-turn-helix residues of the two regulators GntR and GntH exhibit extensive homologies. The similarity between the two regulators prompted analysis of the cross-regulation of the GntI genes by GntH. Repression of gntKU and gntT by GntH, as well as GntR, was indeed observed using transcriptional fusions and RNA analysis. High GntH expression, from cloned gntH or induced through 5-ketogluconate, was required to observe repression of GntI genes. Two GntR-binding elements were identified in the promoter-operator region of gntKU and were also shown to be the target sites of GntH by mutational analysis. However, the GntI genes were not induced by gluconate in the presence of enhanced amounts of GntH, whereas repression by GntR was relieved by gluconate. The repression of GntI genes by GntH is thus unusual in that it is not relieved by the availability of substrate. These results led us to propose that GntH activates GntII and represses the GntI genes in the presence of metabolites derived from gluconate, allowing the organism to switch from the GntI to the GntII system. This cross-regulation may explain the progressive changes in gnt gene expression along with phases of cell growth in the presence of gluconate.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读