[No authors listed]
The Drosophila melanogaster genome contains three putative glucuronyltransferases homologous to human GlcAT-I and GlcAT-P. These enzymes are predicted to be beta1,3-glucuronyltransferases involved in the synthesis of the glycosaminoglycan (GAG)-protein linkage region of proteoglycans and the HNK-1 carbohydrate epitope of glycoproteins, respectively. The genes encode active enzymes, which we have designated DmGlcAT-I, DmGlcAT-BSI, and DmGlcAT-BSII (where BS stands for "broad specificity"). Protein A-tagged truncated soluble forms of all three enzymes efficiently transfer GlcUA from UDP-GlcUA to the linkage region trisaccharide Galbeta1-3Galbeta1-4Xyl. Strikingly, DmGlcAT-I has specificity for Galbeta1-3Galbeta1-4Xyl, whereas DmGlcAT-BSI and DmGlcAT-BSII act on a wide array of substrates with non-reducing terminal beta1,3- and beta1,4-linked Gal residues. Their highest activities are obtained with asialoorosomucoid with a terminal Galbeta1-4GlcNAc sequence, indicating their possible involvement in the synthesis of the HNK-1 epitope in addition to the GAG-protein linkage region. Galbeta1-3GlcNAc and Galbeta1-3GalNAc, disaccharide structures widely found in N- and O-glycans of glycoproteins and glycolipids, also serve as acceptors for DmGlcAT-BSI and -BSII. Transcripts of all three enzymes are ubiquitously expressed throughout the developmental stages and in adult tissues of Drosophila. Thus, all three glucuronyltransferases are likely involved in the synthesis of the GAG-protein linkage region in Drosophila, and DmGlcAT-BSI and -BSII appear to be involved in various GlcUA transfer reactions for the synthesis of proteoglycans, glycoproteins, and glycolipids. This activity distinguishes these glucuronyltransferases from their mammalian homologs GlcAT-P and GlcAT-D (or -S). Sequence alignment of the Drosophila glucuronyltransferases with homologs in human, rat, and Caenorhabditis elegans demonstrates the conservation of a majority of the critical amino acid residues in the active sites of the three Drosophila enzymes.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |