例如:"lncRNA", "apoptosis", "WRKY"

Interaction of the plasma membrane Ca2+ pump 4b/CI with the Ca2+/calmodulin-dependent membrane-associated kinase CASK.

J Biol Chem. 2003 Mar 14;278(11):9778-83. Epub 2003 Jan 02
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Spatial and temporal regulation of intracellular Ca(2+) is a key event in many signaling pathways. Plasma membrane Ca(2+)-ATPases (PMCAs) are major regulators of Ca(2+) homeostasis and bind to PDZ (PSD-95/Dlg/ZO-1) domains via their C termini. Various membrane-associated guanylate kinase family members have been identified as interaction partners of PMCAs. In particular, SAP90/PSD95, PSD93/chapsyn-110, SAP97, and SAP102 all bind to the C-terminal tails of PMCA "b" splice variants. Additionally, it has been demonstrated that PMCA4b interacts with neuronal nitric-oxide synthase and that isoform 2b interacts with Na(+)/H(+) exchanger regulatory factor 2, both via a PDZ domain. CASK (calcium/calmodulin-dependent serine protein kinase) contains a calmodulin-dependent protein kinase-like domain followed by PDZ, SH3, and guanylate kinase-like domains. In adult brain CASK is located at neuronal synapses and interacts with various proteins, e.g. neurexin and Veli/LIN-7. In kidney it is localized to renal epithelia. Surprisingly, interaction with the Tbr-1 transcription factor, nuclear transport, binding to DNA T-elements (in a complex with Tbr-1), and transcriptional competence has been shown. Here we show that the C terminus of PMCA4b binds to CASK and that both proteins co-precipitate from brain and kidney tissue lysates. Immunofluorescence staining revealed co-expression of PMCA, CASK, and calbindin-d-28K in distal tubuli of rat kidney sections. To test if physical interaction of both proteins results in functional consequences we constructed a T-element-dependent reporter vector and investigated luciferase activity in HEK293 lysates, previously co-transfected with PMCA4b expression and control vectors. Expression of wild-type PMCA resulted in an 80% decrease in T-element-dependent transcriptional activity, whereas co-expression of a point-mutated PMCA, with nearly eliminated Ca(2+) pumping activity, had only a small influence on regulation of transcriptional activity. These results provide evidence of a new direct Ca(2+)-dependent link from the plasma membrane to the nucleus.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读