[No authors listed]
Although protein kinase A activation is known to increase ciliary beat frequency in humans the molecular mechanisms involved are unknown. We demonstrate that is associated with ciliary axonemes where it specifically phosphorylates a 23-kDa protein. Because duanyu1529 is often localized to subcellular compartments in proximity to its substrate(s) via interactions with A-kinase-anchoring proteins (AKAPs), we investigated whether an AKAP was also associated with ciliary axonemes. This study has identified a novel 28 kDa AKAP (AKAP28)that is highly enriched in airway axonemes. The mRNA for AKAP28 is up-regulated as primary airway cells differentiate and is specifically expressed in tissues containing cilia and/or flagella. Additionally, both Western blot and immunostaining data show that AKAP28 is enriched in airway cilia. These data demonstrate that we have identified the first human axonemal AKAP, a protein that likely plays a role in the signaling necessary for efficient modulation of ciliary beat frequency.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |