例如:"lncRNA", "apoptosis", "WRKY"

Dissection of c-MOS degron.

EMBO J.2002 Nov 15;21(22):6061-71. doi:10.1093/emboj/cdf626
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


c-MOS, a MAP kinase kinase kinase, is a regulator of oocyte maturation. The concentration of c-MOS is controlled in part through its conditional degradation. Previous studies proposed the "second-codon rule", according to which the N-terminal proline (Pro) of c-MOS is a destabilizing residue that targets c-MOS for degradation. We analyzed the degradation signal (degron) of c-MOS in Xenopus oocytes, found it to be a portable degron, and demonstrated that, contrary to the model above, the N-terminal Pro residue of c-MOS is entirely dispensable for its degradation if Ser-2 (encoded Ser-3) of c-MOS is replaced by a small non-phosphorylatable residue such as Gly. The dependence of c-MOS degradation on N-terminal Pro is shown to be caused by a Pro-mediated downregulation of the net phosphorylation of Ser-2, a modification that halts c-MOS degradation in oocytes. Thus, the N-terminal Pro residue of c-MOS is not a recognition determinant for a ubiquitin ligase, in agreement with earlier evidence that Pro is a stabilizing residue in the N-end rule.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读