例如:"lncRNA", "apoptosis", "WRKY"

A novel topology and redox regulation of the rat brain K+-dependent Na+/Ca2+ exchanger, NCKX2.

J Biol Chem. 2002 Dec 13;277(50):48923-30. Epub 2002 Oct 10
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


In this study we have examined the roles of endogenous cysteine residues in the rat brain K(+)-dependent Na(+)/Ca(2+) exchanger protein, NCKX2, by site-directed mutagenesis. We found that mutation of Cys-614 or Cys-666 to Ala inhibited expression of the exchanger protein in HEK-293 cells, but not in an in vitro translation system. We speculated that Cys-614 and Cys-666 might form an extracellular disulfide bond that stabilized protein structure. Such an arrangement would place the C terminus of the exchanger outside the cell, contrary to the original topological model. This hypothesis was tested by adding a hemagglutinin A epitope to the C terminus of the protein. The hemagglutinin A epitope could be recognized with a specific antibody without permeabilization of the cell membrane, supporting an extracellular location for the C terminus. Additionally, the exchanger molecule could be labeled with biotin maleimide only following extracellular application of beta-mercaptoethanol. Surprisingly, mutation of Cys-395, located in the large intracellular loop, to Ala, prevented reduction-dependent labeling of the protein. The activity of wild-type exchanger, but not the Cys-395 --> Ala mutant, was stimulated after application of beta-mercaptoethanol. Co-immunoprecipitation experiments demonstrated self-association between wild-type and FLAG-tagged exchanger proteins that could not be inhibited by Cys-395 --> Ala mutation. These results suggest that NCKX2 associates as a dimer, an interaction that does not require, but may be stabilized by, a disulfide linkage through Cys-395. This linkage, perhaps by limiting protein mobility along the dimer interface, reduces the transport activity of NCKX2.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读