例如:"lncRNA", "apoptosis", "WRKY"

The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis.

Proc. Natl. Acad. Sci. U.S.A.2002 Aug 20;99(17):11519-24. Epub 2002 Aug 08
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The covalent attachment of ubiquitin is an important determinant for selective protein degradation by the 26S proteasome in plants and animals. The specificity of ubiquitination is often controlled by ubiquitin-protein ligases (or E3s), which facilitate the transfer of ubiquitin to appropriate targets. One ligase type, the SCF E3s are composed of four proteins, cullin1/Cdc53, Rbx1/Roc1/Hrt1, Skp1, and an F-box protein. The F-box protein, which identifies the targets, binds to the Skp1 component of the complex through a degenerate N-terminal approximately 60-aa motif called the F-box. Using published F-boxes as queries, we have identified 694 potential F-box genes in Arabidopsis, making this gene superfamily one of the largest currently known in plants. Most of the encoded proteins contain interaction domains C-terminal to the F-box that presumably participate in substrate recognition. The F-box proteins can be classified via a phylogenetic approach into five major families, which can be further organized into multiple subfamilies. Sequence diversity within the subfamilies suggests that many F-box proteins have distinct functions and/or substrates. Representatives of all of the major families interact in yeast two-hybrid experiments with members of the Arabidopsis Skp family supporting their classification as F-box proteins. For some, a limited preference for Skps was observed, suggesting that a hierarchical organization of SCF complexes exists defined by distinct Skp/F-box protein pairs. Collectively, the data shows that Arabidopsis has exploited the SCF complex and the ubiquitin/26S proteasome pathway as a major route for cellular regulation and that a diverse array of SCF targets is likely present in plants.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读