例如:"lncRNA", "apoptosis", "WRKY"

Combinatorial diversity of fission yeast SCF ubiquitin ligases by homo- and heterooligomeric assemblies of the F-box proteins Pop1p and Pop2p.

BMC Biochem.2002 Aug 07;3:22. doi:10.1186/1471-2091-3-22. Epub 2002 Aug 07
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BACKGROUND:SCF ubiquitin ligases share the core subunits cullin 1, SKP1, and HRT1/RBX1/ROC1, which associate with different F-box proteins. F-box proteins bind substrates following their phosphorylation upon stimulation of various signaling pathways. Ubiquitin-mediated destruction of the fission yeast cyclin-dependent kinase inhibitor Rum1p depends on two heterooligomerizing F-box proteins, Pop1p and Pop2p. Both proteins interact with the cullin Pcu1p when overexpressed, but it is unknown whether this reflects their co-assembly into bona fide SCF complexes. RESULTS:We have identified Psh1p and Pip1p, the fission yeast homologues of human SKP1 and HRT1/RBX1/ROC1, and show that both associate with Pop1p, Pop2p, and Pcu1p into a ~500 kDa SCFPop1p-Pop2p complex, which supports polyubiquitylation of Rum1p. Only the F-box of Pop1p is required for SCFPop1p-Pop2p function, while Pop2p seems to be attracted into the complex through binding to Pop1p. Since all SCFPop1p-Pop2p subunits, except for Pop1p, which is exclusively nuclear, localize to both the nucleus and the cytoplasm, the F-box of Pop2p may be critical for the assembly of cytoplasmic SCFPop2p complexes. In support of this notion, we demonstrate individual SCFPop1p and SCFPop2p complexes bearing ubiquitin ligase activity. CONCLUSION:Our data suggest that distinct homo- and heterooligomeric assemblies of Pop1p and Pop2p generate combinatorial diversity of SCFPop function in fission yeast. Whereas a heterooligomeric SCFPop1p-Pop2p complex mediates polyubiquitylation of Rum1p, homooligomeric SCFPop1p and SCFPop2p complexes may target unknown nuclear and cytoplasmic substrates.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读