[No authors listed]
In mammals, two combinations of muscle nicotinic acetylcholine receptors (AChRs) are used: alpha2betagammadelta (gamma-AChR) or alpha2betaepsilondelta (epsilon-AChR). After birth, gamma-AChRs are replaced by epsilon-AChRs (gamma/epsilon-switch). The two receptors have different conductances and open times. During perinatal period, the long open time gamma-AChRs generate random myofiber action potentials from uniquantal miniature end-plate potentials (mEPPs). epsilon-AChRs are suitable for strong adult muscle activities. Since the effect of the gamma/epsilon-switch on neuromuscular development was unclear, despite the many differences in channel characteristics, we carried out this study to generate gamma-subunit-deficient mice. Homozygotes born alive survived for 2 days in a stable condition, and were able to move their forelimbs. Endplate AChRs included epsilon-subunits, and muscle fibers had multiple neuromuscular junctions. Both pre- and postsynapses were abnormal and spontaneous action potentials generated from mEPPs were totally absent. Results suggest a requirement for gamma-AChRs in mediating synaptically-induced action potential activity critical for neuromuscular development.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |