[No authors listed]
BACKGROUND:Aromatic L-amino acid decarboxylase (AADC) is the enzyme responsible for the decarboxylation step in both the catecholamine and indoleamine synthetic pathways. In the brain, however, a group of AADC containing neurones is found outside the classical monoaminergic cell groups. Since such non-monoaminergic AADC is expressed abundantly in the suprachiasmatic nucleus (SCN), the mammalian circadian centre, we characterized the role of AADC in circadian oscillation. RESULTS:AADC gene expression was observed in neurones of the dorsomedial subdivision of the SCN and its dorsal continuant in the anterior hypothalamic area. These AADC neurones could uptake exogenously applied L-DOPA and formed dopamine. AADC was co-expressed with vasopressin and the clock gene Per1 in the neurones of the SCN. Circadian gene expression of AADC was observed with a peak at subjective day and a trough at subjective night. The circadian rhythm of AADC enzyme activity in the SCN reflects the expression of the gene. CONCLUSIONS:Non-monoaminergic AADC in the SCN is expressed in clock oscillating cells, and the decarboxylating activity of master clock cells are under the control of the circadian rhythm.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |