例如:"lncRNA", "apoptosis", "WRKY"

Adenine phosphoribosyltransferase isoforms of Arabidopsis and their potential contributions to adenine and cytokinin metabolism.

Physiol Plant. 2002 May;115(1):56-68
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Adenine phosphoribosyltransferase (APT; EC 2.4.2.7) is a constitutively expressed enzyme involved in the one-step salvage of adenine to AMP. The Arabidopsis thaliana genome contains five sequences annotated as encoding APT or APT-like enzymes. Three of these have now been cloned, over-expressed and compared using kinetic analyses. At a cytosolic pH, all bind adenine efficiently based on their Km values (0.8-2.6 &mgr;M), although APT1 metabolizes adenine at a rate 31-53 times faster than APT2 and APT3, respectively. Since APT also has a possible role in the interconversion of cytokinin bases to nucleotides, we characterized the activity of each isoform on zeatin, isopentenyladenine and benzyladenine. Based on their Km values, APT2 and APT3 had much higher affinities than APT1 for all three cytokinins (15-440 &mgr;M for APT2 and 3 vs. 1.8-2.5 mM for APT1); conversely the Vmax values for APT2 and APT3 on these CK substrates showed the opposite trend, being 4- to 19-fold lower than those of APT1. Anti-peptide antibodies for APT1, APT2, and APT3 were prepared and used to examine the subcellular localization of each isoform. Based on these results, APT1 and APT3 appear to be cytosolic, while the localization of APT2 was inconclusive although sequence analysis implies that APT2 is also cytosolic. Each isoform was modelled against the crystal structure of APT from Leishmania donovani, and structural differences in substrate specificity-determining domains have been found. The estimated kinetic activities of these APTs suggest that they contribute primarily to adenine recycling, although an involvement in cytokinin interconversion cannot be discounted.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读