例如:"lncRNA", "apoptosis", "WRKY"

Decreased expression of fos-related antigens (FRAs) in the hypothalamic dopaminergic neurons after immunoneutralization of endogenous prolactin.

Endocrine. 2001 Dec;16(3):181-7
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


In our previous studies we found that administration of exogenous prolactin increased dopamine turnover in the terminal areas of the hypothalamic dopaminergic neurons controlling prolactin secretion from pituitary lactotrophs. In this study we investigated the effect of immunoneutralization of endogenous prolactin on the expression of FRAs in the tuberoinfundibular dopaminergic (TIDA), tuberohypophysial dopaminergic (THDA), and periventricular hypothalamic dopaminergic (PHDA) subpopulations of the hypothalamic dopaminergic neurons. Female rats were ovariectomized on d 0 of the experiment. At 1000 h of d 10, all animals were injected with 20 microg of 17-beta-estradiol sc to induce a proestrous-like surge of prolactin at 1700 h the next day. At 1000 h on d 11, half of the animals were injected with 200 microL of rabbit anti-rat prolactin antiserum ip, while the controls received normal rabbit serum. Groups of animals were sacrificed for immunocytochemistry in 2 h intervals between 1300 and 2100 h. Double-label immunocytochemistry for FRAs and tyrosine hydroxylase (TH) was performed and the results are presented as percentage of TH-immunoreactive neurons expressing FRAs. In the control animals, expression of FRAs decreased at 1500 h, gradually increased by 1900 h, but was lower than the basal levels by 2100 h. Expression of FRAs was significantly lower at 1900 h in the PHDA, THDA and TIDA neurons of prolactin antiserum treated rats than in the controls. These results indicate that elimination of endogenous prolactin from the circulation lowers the activity and/or prevents the reactivation of neuroendocrine dopaminergic neurons at the beginning of the dark phase.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读