例如:"lncRNA", "apoptosis", "WRKY"

An alternative explanation for the catalytic proficiency of orotidine 5'-phosphate decarboxylase.

J. Am. Chem. Soc.2001 Dec 26;123(51):12837-48
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Orotidine 5'-phosphate decarboxylase (ODCase) is the most proficient enzyme known, enhancing the rate of decarboxylation of orotidine 5'-phosphate (OMP) by a factor of 10(17), which corresponds to a DeltaDeltaG++ of approximately 24 kcal/mol. Ground-state destabilization through local electrostatic stress has been recently proposed as the basis of catalytic rate enhancement for a mechanism that is the same as in solution. We have carried out gas-phase ab initio quantum mechanical calculations combined with a free energy method, a continuum solvent model, and molecular dynamics simulations to assess an alternative mechanism. Although we are not able to reproduce the experimentally observed DeltaDeltaG++ quantitatively, we present evidence that this DeltaDeltaG++ is very large, in the range found experimentally. We thus conclude that the preferred mechanism may well be different from that in solution, involving an equilibrium pre-protonation of OMP C5 by a catalytic lysine residue that greatly reduces the barrier to subsequent decarboxylation.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读