[No authors listed]
Orotidine 5'-phosphate decarboxylase (ODCase) is the most proficient enzyme known, enhancing the rate of decarboxylation of orotidine 5'-phosphate (OMP) by a factor of 10(17), which corresponds to a DeltaDeltaG++ of approximately 24 kcal/mol. Ground-state destabilization through local electrostatic stress has been recently proposed as the basis of catalytic rate enhancement for a mechanism that is the same as in solution. We have carried out gas-phase ab initio quantum mechanical calculations combined with a free energy method, a continuum solvent model, and molecular dynamics simulations to assess an alternative mechanism. Although we are not able to reproduce the experimentally observed DeltaDeltaG++ quantitatively, we present evidence that this DeltaDeltaG++ is very large, in the range found experimentally. We thus conclude that the preferred mechanism may well be different from that in solution, involving an equilibrium pre-protonation of OMP C5 by a catalytic lysine residue that greatly reduces the barrier to subsequent decarboxylation.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |