例如:"lncRNA", "apoptosis", "WRKY"

C5b-9 terminal complement complex protects oligodendrocytes from death by regulating Bad through phosphatidylinositol 3-kinase/Akt pathway.

J. Immunol.2001 Aug 15;167(4):2305-11. doi:10.4049/jimmunol.167.4.2305
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Apoptosis of oligodendrocytes is induced by serum growth factor deprivation. We showed that oligodendrocytes and progenitor cells respond to serum withdrawal by a rapid decline of Bcl-2 mRNA expression and caspase-3-dependent apoptotic death. Sublytic assembly of membrane-inserted terminal complement complexes consisting of C5b, C6, C7, C8, and C9 proteins (C5b-9) inhibits caspase-3 activation and apoptotic death of oligodendrocytes. In this study, we examined an involvement of the mitochondria in oligodendrocyte apoptosis and the role of C5b-9 on this process. Decreased phosphatidylinositol 3-kinase and Akt activities occurred in association with cytochrome c release and caspase-9 activation when cells were placed in defined medium. C5b-9 inhibited the mitochondrial pathway of apoptosis in oligodendrocytes, as shown by decreased cytochrome c release and inhibition of caspase-9 activation. Phosphatidylinositol 3-phosphate kinase and Akt activities were also induced by C5b-9, and the phosphatidylinositol 3-phosphate kinase inhibitor LY294002 reversed the protective effect of C5b-9. Phosphatidylinositol 3-phosphate kinase activity was also responsible for the phosphorylation of Bad at Ser112 and Ser136. This phosphorylation resulted in dissociation of Bad from the Bad/Bcl-xL complex in a G(i)alpha-dependent manner. The mitochondrial pathway of oligodendrocyte apoptosis is, therefore, inhibited by C5b-9 through post-translational regulation of Bad. This mechanism may be involved in the promotion of oligodendrocyte survival in inflammatory demyelinating disorders affecting the CNS.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读