[No authors listed]
Historically, association tests have been used extensively in medical genetics, but have had virtually no application in plant genetics. One obstacle to their application is the structured populations often found in crop plants, which may lead to nonfunctional, spurious associations. In this study, statistical methods to account for population structure were extended for use with quantitative variation and applied to our evaluation of maize flowering time. Mutagenesis and quantitative trait locus (QTL) studies suggested that the maize gene Dwarf8 might affect the quantitative variation of maize flowering time and plant height. The wheat orthologs of this gene contributed to the increased yields seen in the 'Green Revolution' varieties. We used association approaches to evaluate Dwarf8 sequence polymorphisms from 92 maize inbred lines. Population structure was estimated using a Bayesian analysis of 141 simple sequence repeat (SSR) loci. Our results indicate that a suite of polymorphisms associate with differences in flowering time, which include a deletion that may alter a key domain in the coding region. The distribution of nonsynonymous polymorphisms suggests that Dwarf8 has been a target of selection.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |