[No authors listed]
To clarify the reason for the high acyl-CoA hydrolase (ACH) activity found in dog liver microsomes, the ACH was purified to homogeneity using column chromatography. The purified enzyme, named ACH D1, exhibited a subunit molecular weight of 60 KDa. The amino terminal amino acid sequence showed a striking homology with rat liver carboxylesterase (CES) isozymes. ACH D1 possessed hydrolytic activities toward esters containing xenobiotics in addition to acyl-CoA thioesters, and these activities were inhibited by a specific inhibitor of CES or by CES RH1 antibodies. These findings suggest that this protein is a member of the CES multigene family. Since ACH D1 appears to be a protein belonging to the CES family, we cloned the cDNA from a dog liver lambdagt10 library with a CES-specific probe. The clone obtained, designated CES D1, possessed several motifs characterizing CES isozymes, and the deduced amino acid sequences were 100% identical with those of ACH D1 in the first 18 amino acid residues. When it was expressed in V79 cells, it showed high catalytic activities toward acyl-CoA thioesters. In addition, the characteristics of the expressed protein were identical with those of ACH D1 in many cases, suggesting that CES D1 encodes liver microsomal ACH D1.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |