[No authors listed]
In Dictyostelium discoideum, the initial differentiation of cells is regulated by the phase of the cell cycle at starvation. Cells in S and early G2 (or with a low DNA content) have relatively high levels of cellular Ca2+ and display a prestalk tendency after starvation, whereas cells in mid to late G2 (or with a high DNA content) have relatively low levels of Ca2+ and display a prespore tendency. We found that there is a correlation between cytosolic Ca2+ and cell cycle phase, with high Ca2+ levels being restricted to cells in the S and early G2 phases. As expected on the basis of this correlation, cell cycle inhibitors influence the proportions of amoebae containing high or low Ca2+. However, it has been reported that in the rtoA mutant, which upon differentiation gives rise to many more stalk cells than spores (compared to the wild type), initial cell-type choice is independent of cell cycle phase at starvation. In contrast to the wild type, a disproportionately large fraction of rtoA amoebae fall into the high Ca2+ class, possibly due to an altered ability of this mutant to transport Ca2+.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |