例如:"lncRNA", "apoptosis", "WRKY"

Novel SCAMPs lacking NPF repeats: ubiquitous and synaptic vesicle-specific forms implicate SCAMPs in multiple membrane-trafficking functions.

J. Neurosci.2000 Nov 01;20(21):7941-50
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


In vertebrates, secretory carrier membrane proteins (SCAMPs) 1-3 constitute a family of putative membrane-trafficking proteins composed of cytoplasmic N-terminal sequences with NPF repeats, four central transmembrane regions (TMRs), and a cytoplasmic tail. SCAMPs probably function in endocytosis by recruiting EH-domain proteins to the N-terminal NPF repeats but may have additional functions mediated by their other sequences. We now demonstrate that SCAMPs form a much larger and more heterogeneous protein family than envisioned previously, with an evolutionary conservation extending to invertebrates and plants. Two novel vertebrate SCAMPs (SCAMPs 4 and 5), single SCAMP genes in Caenorhabditis elegans and Drosophila melanogaster, and multiple SCAMPs in Arabidopsis thaliana were identified. Interestingly, the novel SCAMPs 4 and 5 lack the N-terminal NPF repeats that are highly conserved in all other SCAMPs. RNA and Western blotting experiments showed that SCAMPs 1-4 are ubiquitously coexpressed, whereas SCAMP 5 is only detectable in brain where it is expressed late in development coincident with the elaboration of mature synapses. Immunocytochemistry revealed that SCAMP 5 exhibits a synaptic localization, and subcellular fractionations demonstrated that SCAMP 5 is highly enriched in synaptic vesicles. Our studies characterize SCAMPs as a heterogeneous family of putative trafficking proteins composed of three isoforms that are primarily synthesized outside of neurons (SCAMPs 2-4), one isoform that is ubiquitously expressed but highly concentrated on synaptic vesicles (SCAMP 1), and one brain-specific isoform primarily localized to synaptic vesicles (SCAMP 5). The conservation of the TMRs in all SCAMPs with the variable presence of N-terminal NPF repeats suggests that in addition to the role of some SCAMPs in endocytosis mediated by their NPF repeats, all SCAMPs perform a "core" function in membrane traffic mediated by their TMRs.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读