例如:"lncRNA", "apoptosis", "WRKY"

Genetic suppression of phenotypes arising from mutations in dystrophin-related genes in Caenorhabditis elegans.

Curr. Biol.2000 Sep 21;10(18):1092-7
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BACKGROUND:Dystrophin is the product of the gene that is mutated in Duchenne muscular dystrophy (DMD), a progressive neuromuscular disease for which no treatment is available. Mice carrying a mutation in the gene for dystrophin (mdx mice) display only a mild phenotype, but it is aggravated when combined with a mutation in the MyoD gene. The nematode worm Caenorhabditis elegans has a dystrophin homologue (dys-1), but null mutations in dys-1 do not result in muscle degeneration. RESULTS:We generated worms carrying both the dys-1 null mutation cx18, and a weak mutation, cc561ts, of the C. elegans MyoD homologue hlh-1. The double mutants displayed a time-dependent impairment of locomotion and egg laying, a phenotype not seen in the single mutants, and extensive muscle degeneration. This result allowed us to look for genes that, when misexpressed, could suppress the dys-1; hlh-1 phenotype. When overexpressed, the dyc-1 gene - whose loss-of-function phenotype resembles that of dys-1 - partially suppressed the dys-1; hlh-1 phenotype. The dyc-1 gene encodes a novel protein sharing similarities with the mammalian neural nitric oxide synthase (nNOS)-binding protein CAPON, and is expressed in the muscles of the worm. CONCLUSIONS:As a C. elegans model for dystrophin-dependent myopathy, the dys-1; hlh-1 worms should permit the identification of genes, and ultimately drugs, that would reverse the muscle degeneration in this model.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读