例如:"lncRNA", "apoptosis", "WRKY"

Olfaction and odor discrimination are mediated by the C. elegans guanylyl cyclase ODR-1.

Neuron. 2000 Mar;25(3):575-86
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Animals in complex environments must discriminate between salient and uninformative sensory cues. Caenorhabditis elegans uses one pair of olfactory neurons called AWC to sense many different odorants, yet the animal can distinguish each odorant from the others in discrimination assays. We demonstrate that the transmembrane guanylyl cyclase ODR-1 is essential for responses to all AWC-sensed odorants. ODR-1 appears to be a shared signaling component downstream of odorant receptors. Overexpression of ODR-1 protein indicates that ODR-1 can influence odor discrimination and adaptation as well as olfaction. Adaptation to one odorant, butanone, is disrupted by ODR-1 overexpression. Olfactory discrimination is also disrupted by ODR-1 overexpression, probably by overproduction of the shared second messenger cGMP. We propose that AWC odorant signaling pathways are insulated to permit odor discrimination.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读