例如:"lncRNA", "apoptosis", "WRKY"

Concentrated expression of Ca2+/ calmodulin-dependent protein kinase II and protein kinase C in the mushroom bodies of the brain of the honeybee Apis mellifera L.

J. Comp. Neurol.2000 Feb 21;417(4):501-10
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


We have previously used the differential display method to identify a gene that is expressed preferentially in the mushroom bodies of worker honeybees and to show that it encodes a putative inositol 1,4,5-trisphosphate receptor (IP3R) homologue (Kamikouchi et al. [1998] Biochem. Biophys. Res. Commun. 242:181-186). In the present study, we examined whether the expression of some of the genes for proteins involved in the intracellular Ca2+ signal transduction is also concentrated in the mushroom bodies of the honeybee by isolating cDNA fragments that encode the Ca2+/calmodulin-dependent protein kinase II (CaMKII) and protein kinase C homologues of the honeybee. In situ hybridization analysis revealed that the expression of these genes was also concentrated in the mushroom bodies of the honeybee brain: The CaMKII gene was expressed preferentially in the large-type Kenyon cells of the mushroom bodies, whereas that for was expressed in both the large and small types of Kenyon cells. The expression of the genes for IP3R and CaMKII was concentrated in the mushroom bodies of the queen and drone as well as in those of the worker bee. Furthermore, the enzymatic activities of CaMKII and duanyu1531 were found to be higher in the mushroom bodies/central bodies than in the optic and antennal lobes of the worker bee brain. These results suggest that the function of the intracellular Ca2+ signal transduction is enhanced in Kenyon cells in comparison to other neuronal cell types in the honeybee brain.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读