[No authors listed]
It has been suggested that proteins of molecular size 56-58 kDa play an important role in bovine ovarian follicular development and oocyte maturation. A polyclonal antibody was raised against a 56- to 58-kDa protein band purified from bovine granulosa cells and was used to screen granulosa or luteal cell cDNA expression libraries. This work resulted in the identification of a cDNA encoding for a protein of 60.1 kDa with a signal peptide of 13 residues. The bovine 60.1-kDa protein shared an overall 86.7% and 81.8% identity with, respectively, the human 80K-H protein and the mouse putative beta subunit of glucosidase II (beta-GII), and was named vacuolar system-associated protein-60 (VASAP-60). Marked differences in sequence identity were noted in a putative molecular adapter domain containing a tandem D and E amino acid stretch flanked by proline-rich sequences presenting the minimal PXXP SH3 motif. VASAP-60 was shown to be unglycosylated using endoglycosidase H treatment and was found mainly in a cellular membrane fraction of bovine corpus luteum. VASAP-60 was localized in a rat hepatic Golgi/endosome fraction and in wheat germ agglutinin (WGA) affinity chromatographic eluates, thereby suggesting the presence of interactions with membrane glycoproteins. A polyclonal antibody was raised against the putative adapter domain of the recombinant VASAP-60; this was shown to recognize a major 88-kDa and two minor 58-kDa and 50-kDa proteins, suggesting that the major 88-kDa protein band represents the complete VASAP-60 protein whereas the 58-kDa and the 50-kDa bands represent its proteolytic fragments. Northern blot analysis demonstrated the presence of a single 2.3-kilobase transcript in all the bovine tissues analyzed with variation in the steady state level between tissues. Immunohistochemical observations showed that VASAP-60 was widely distributed in bovine tissues and was localized in pericytoplasmic and perinuclear membranes. In epithelial cells, the staining presented a basolateral or apical polarity associated with intracellular vacuoles. In conclusion, we have characterized a novel acidic membrane protein, associated with organelles of the vacuolar system, that is widely and histospecifically expressed in bovine tissues. VASAP-60 represents either the bovine ortholog or a new family member of the previously characterized human 80K-H and murine beta-GII proteins. Our results suggest that VASAP-60 presents characteristics of a molecular adaptor protein with functions in membrane-trafficking events.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |