例如:"lncRNA", "apoptosis", "WRKY"

Long-chain acyl-CoA oxidases of Arabidopsis.

Plant J.1999 Oct;20(1):1-13
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Full-length cDNAs coding for two distinct acyl-CoA oxidases were isolated by screening an Arabidopsis cDNA library. The genes for the two acyl-CoA oxidases have been termed AtACX1 and AtACX2. AtACX1 encodes a peptide of 664 amino acids possessing a molecular mass of 74.3 kDa. AtACX2 encodes a peptide of 691 amino acids in length with a molecular mass of 77.5 kDa. Peroxisomal targeting signals were identified in the primary sequences. AtACX1 has a putative PTS1, whereas AtACX2 has a characteristic PTS2. Expression of AtACX1 and AtACX2 in Escherichia coli gave active enzymes for enzymatic and biochemical analysis. AtACX1 was active with both medium-and long-chain saturated fatty acyl-CoAs and showed maximal activity with C14-CoA. Activity with mono-unsaturated acyl-CoAs was slightly higher than with the corresponding saturated acyl-CoA. AtACX2 was active with long-chain acyl-CoAs and showed maximal activity with C18-CoA. AtACX2 activity with mono-unsaturated acyl-CoAs was approximately twice as high as with the corresponding saturated acyl-CoA. Both enzymes have an apparent Km of approximately 5 microM with the preferred substrate. Northern analysis was conducted to determine the expression patterns of AtACX1 and AtACX2 during germination and in various tissues of a mature plant. The two genes showed generally similar expression profiles and steady-state mRNA levels in seedlings and mature tissues, but subtle differences were observed. Enzymatic analyses of plant extracts revealed that AtACX1 and AtACX2 are members of a family that includes acyl-CoA oxidases specific for shorter-chain acyl-CoAs. Through expression of antisense constructs of the individual genes, we were able to decrease long-chain oxidase activity only in antisense AtACX1 plants. Seedlings with long-chain oxidase activity reduced down to 30% of wild-type levels germinated and established normally; however, reduced root growth appeared to be a general feature of antisense AtACX1 plants.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读