例如:"lncRNA", "apoptosis", "WRKY"

Influence of S-adenosylmethionine pool size on spontaneous mutation, dam methylation, and cell growth of Escherichia coli.

J. Bacteriol.1999 Nov;181(21):6756-62
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Escherichia coli strains that are deficient in the Ada and Ogt DNA repair methyltransferases display an elevated spontaneous G:C-to-A:T transition mutation rate, and this increase has been attributed to mutagenic O(6)-alkylguanine lesions being formed via the alkylation of DNA by endogenous metabolites. Here we test the frequently cited hypothesis that S-adenosylmethionine (SAM) can act as a weak alkylating agent in vivo and that it contributes to endogenous DNA alkylation. By regulating the expression of the rat liver SAM synthetase and the bacteriophage T3 SAM hydrolase proteins in E. coli, a 100-fold range of SAM levels could be achieved. However, neither increasing nor decreasing SAM levels significantly affected spontaneous mutation rates, leading us to conclude that SAM is not a major contributor to the endogenous formation of O(6)-methylguanine lesions in E. coli.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读