[No authors listed]
Two gene groups, designated energy converting hydrogenase A (eha) and energy converting hydrogenase B (ehb), each encoding a putative multisubunit membrane-bound [NiFe] hydrogenase, were identified in the genome of Methanobacterium thermoautotrophicum. The length of the transcription units was determined using reverse transcription (RT)-PCR. The eha operon (12.5 kb) and the ehb operon (9.6 kb) were found to be composed of 20 and 17 open reading frames, respectively. Competitive RT-PCR was used to compare the amounts of eha and ehb transcripts with the amounts of transcripts of genes encoding the M. thermoautotrophicum catabolic enzymes cyclohydrolase (mch) and a subunit of heterodisulfide reductase (hdrC). In cells grown under conditions in which H2 was nonlimiting, the eha transcripts were 250-fold and 125-fold less abundant and the ehb transcripts were approximately sixfold and threefold less abundant than the hdrC and mch transcripts, respectively. In cells grown under H2 limitation, the amounts of eha and ehb transcripts were about threefold higher than in cells grown with sufficient H2 when compared to the amounts of hdrC and mch transcripts. Sequence analysis of the deduced proteins indicated that the eha and ehb operons each encode a [NiFe] hydrogenase large subunit, a [NiFe] hydrogenase small subunit, and two conserved integral membrane proteins. These proteins show high sequence similarity to subunits of the Ech hydrogenase from Methanosarcina barkeri, Escherichia coli hydrogenases 3 and 4, and CO-induced hydrogenase from Rhodospirillum rubrum, all of which form a distinct group of multisubunit membrane-bound [NiFe] hydrogenases and show high sequence similarity to the energy-conserving NADH:quinone oxidoreductase (complex I) from various organisms. In addition to these four subunits, the eha operon encodes a 6[4Fe-4S] polyferredoxin, a 10[4F-4S] polyferredoxin, four nonconserved hydrophilic subunits, and 10 nonconserved integral membrane proteins; the ehb operon encodes a 2[4Fe-4S] ferredoxin, a 14[4Fe-4S] polyferredoxin, two nonconserved hydrophilic subunits, and nine nonconserved integral membrane proteins. A function of these putative membrane-bound [NiFe] hydrogenases as proton pumps involved in endergonic reactions, such as the synthesis of formylmethanofuran from CO2, H2 and methanofuran, is discussed.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |