例如:"lncRNA", "apoptosis", "WRKY"

Sensing of cadmium and copper ions by externally exposed ADL, ASE, and ASH neurons elicits avoidance response in Caenorhabditis elegans.

Neuroreport. 1999 Mar 17;10(4):753-7. doi:10.1097/00001756-199903170-00017
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


We developed a quantitative assay for Caenorhabditis elegans avoidance behavior. This was then used to demonstrate that the worm moved away from toxic concentrations of Cd2+ and Cu2+, but not Ni2+, all ions that prevented development from larval to adult stages. Mutants that have structural defects in ciliated neurons (che-2 and osm-3) as well as worms with three laser-operated neurons (ADL, ASE, and ASH), showed no avoidance behavior from Cd2+ and Cu2+. These results suggest that the avoidance from Cd2+ and Cu2+ are mediated through multiple neural pathways including ADL, ASE, and ASH neurons. We hypothesize that the three sensing neurons provide increased accuracy of the sensory response and a survival advantage in the natural environment of the worm.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读